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Abstract

This paper explores the errors that may arise in when interpreting dynamic nanoindentation measurements with a linear

oscillator model. The work was motivated by an experimental observation that the system’s primary resonance can be

dramatically altered by changes in loading conditions. Investigations elucidate that different sources of nonlinearity can

interact to alter the identified contact stiffness which will manifest itself as a change in the system’s primary and secondary

resonances.

The errors associated with interpreting dynamic indentation measurements with a linear model are investigated through

modeling, analysis, and numerical study. Theoretical efforts show that measurement nonlinearity can be falsely interpreted

as material behavior. Hence, the common practice of applying a linear oscillator model is expected to sometimes lead to

significant errors. These finding suggest that a nonlinear analysis may often be required to improve measurement

interpretations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Studying the nanomechanical response of material surfaces has received much attention in recent years
[1–8]. These studies have been motivated by the development of new nanostructured materials, a continued
miniaturization within engineering, semiconductor components, thin film technology, and a growing interest
in the characterization of soft biomaterials [4,9]. For example, surface characterization is essential for the
semiconductor industry since properties like hardness and moduli can have a significant effect on yield,
performance, and device longevity [10]. As a second example, consider the in vivo performance of biomaterials
where an understanding the surface chemistry and biocompatability are essential considerations [11].
Inadequate surface mechanical properties may lead to premature failure due to wear, fracture, and surface
fatigue mechanisms. In addition, recent research suggests that cells respond to mechanical stimuli which links
the performance of biomedical devices and engineered biomaterials, such as artificial skin and cartilage,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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to submicron mechanical behavior [11,12]. Therefore, the need to accurately characterize nanoscale
mechanical material behavior is of utmost importance.

Some of the primary instruments developed for surface studies include: (1) the atomic force microscope
(AFM); (2) the surface force apparatus (SFA); and (3) a depth-sensing indentation. The capabilities of these
instruments cover a wide range of contact area—from several micrometers down to a few nanometers. The
SFA is mainly suited for direct measurements of surface and intermolecular forces (i.e. not mechanical
material behavior). The AFM is a popular instrument for imaging surface topography which has also been
used to investigate the elastic and plastic properties of materials at the nanoscale (e.g. see Refs. [2,10,13]).
However, indentation-based AFMs suffer quantitatively due to an unknown contact area of the AFM tip and
transducer issues that include piezo-creep, nonlinearity, and hysteresis [8].

The accurate determination of both contact area and displacement have been improved by recent
developments in depth-sensing indentation [8,14,15]. The underlying principle is to couple depth sensing with
force modulation to obtain more quantitative measures of mechanical material behavior. During a typical
nanoindentation process, a load is applied to an indenter and the penetration depth is measured as a function
of load. For quasi-static nanoindentation measurements, it is common to use the slope of the unloading
portion of the load–displacement curve to extract the material’s elastic modulus [14–18]. However, quasi-static
test results are often incomplete since no information about the material’s energy dissipation characteristics
under oscillatory loads is revealed.

To study the surface properties under cyclic loading, it is necessary explore the dynamic response of the
combined indenter/material system at the nanometer scale. While previous dynamic nanoindentation studies
have provided linear parameter estimation schemes, which rely upon the monitored response amplitude and
phase relationships [9,19,20], little is known about the influence of measurement nonlinearities in dynamic
nanoindentation. Therefore, the current study was launched to investigate the influence of measurement
nonlinearities on the estimated mechanical properties.

The work of this investigation is organized as follows. Since this research was motivated by the experimental
observation that the system’s primary resonance could be dramatically altered by changes in the static loading,
some sample experimental results are presented in the next section. Although the resonance shift is
already well known within the nanoindentation community, the authors note that this phenomenon is also
affirmation that nonlinear effects may be important. Suspecting the resonance shift to be the result of multiple
nonlinear interactions, the current investigation was launched to study the role of nonlinearities in the tip-
sample interaction force and in the transducer of a commercially available nanoindentation instrument. The
third section presents a model for the nanoindentation process which is later studied numerically and
theoretically.

A primary outcome from this investigation is the realization that nonlinearities in the measurement process
could be falsely interpreted as material behavior—as in the case of applying a linear oscillator model for
interpretation. This assertion is supported by theoretical efforts that explore the errors associated with using a
linear oscillator model and the beneficial role of nonlinear analysis in obtaining more quantitative
nanomechanical properties.
2. Experimental study and observations

To illustrate the qualitative role of nonlinearity during indentation testing, a series of dynamic
nanoindentation experiments were performed on polytetraflourethylene (PTFE) using a commercially
available Hysitron Inc. nanoindenter. The primary instrumentation used during the experimental study was a
capacitive load–displacement transducer, a lock-in amplifier, and displacement sensing electronics. The
indenter load–displacement transducer, shown in Fig. 1, has rigid top and bottom plates that sandwich a
rigidized middle plate which is supported by compliant outer springs; these plates are used to position the
indenter tip with electrostatic forces that are generated from applied voltages. Displacements of the transducer
middle plate are then sensed by monitoring changes in capacitance.

Prior to performing dynamic indentation experiments, a series of calibration tests were performed on the
electrostatic transducer—while the indenter tip is out of contact with the material specimen. Transducer



ARTICLE IN PRESS

Fig. 1. Nanoindentation transducer schematic for a three-plate electrostatic transducer and material specimen in a typical

nanonindentation test.

Table 1

Experimentally identified model parameters that were applied during numerical studies

Parameter Value Units

m 260 �10�6 kg

c 4.70 �10�2 N s/m

k 160 N/m

E 2 �108 N=m2

R 2 �10�6 m

A 53.85 �10�6 m2

d0 87 �10�6 m
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calibration was performed by applying a quasi-static ramp voltage between two transducer plates and
monitoring the change in the capacitance. To extract the mechanical model terms for the first mode of
vibration, frequency sweep tests were performed in air. Table 1 provides the numerical values for the
transducer model parameters that are defined in the next section.

All tests were performed with a diamond sphero-conical tip since this tip is particularly suited for measuring
soft materials [14]. Since imperfections in the geometric shape of the indenter tip are known to alter the
load–displacement curve [18], the profile of the indenter tip was checked with a scanning electron microscope
(see image in Fig. 3). Here, the scaled image has been imported into Autocad and fitted with a paraboloid to
determine the tip radius of curvature.

A specific goal of the experiments was to elucidate the influence of nonlinearities on the dynamic response of
the system. In particular, the curvature of a typical quasi-static load–displacement curve suggests a ‘‘spring
hardening’’ effect that occurs for an increased indentation depth. This also suggests that the observed primary
resonance could be altered by changes in the static load, dynamic load, or by oscillation amplitude of the
transducer. Therefore, a specific aim of the experimental tests was to capture resonance shifts by varying the
static transducer load for a constant dynamic load.

Fig. 2 shows two series of dynamic nanoindentation experiments performed at static loads of 300 and
500 mN, but for the same dynamic load of 50 mN. As anticipated, a noticeable shift occurs in the system’s
primary resonance for the two different static loads. In the sections that follow, we show that the change in the
system’s resonance is due to measurement nonlinearities that are inherent to the tip–sample interaction force
and the electrostatic transducer. While it is common to apply a linear oscillator model and state that the static
loading has caused a change in the contact stiffness, we will highlight some effects that are overlooked by this
common practice.

The material properties of a material surface are often estimated from the response amplitude and phase
relationships during dynamic nanoindentation. The typical approach is to apply a linear oscillator model to
determine a linear contact stiffness and subsequently determine the material properties from a contact model
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Fig. 2. Experimental dynamic nanoindentation test data showing the response amplitude and phase results at the excitation frequency for

two different static loads. A solid line indicates a 300mN static load and a dashed line represents a 500mN static load.

Fig. 3. Scanning electron microscope image of the nanoindenter tip. This image was used to better approximate the conospherical indenter

tip radius which was determined to be R � 2mm.
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(e.g. see example contact models in Refs. [21–24]). Thus, this paper investigates two theoretical scenarios:
(1) the errors that occur when applying a linear oscillation model to a indenter system when the contact model
is Hertzian and (2) the role of nonlinear analysis in correcting the errors that occur from the choice of using
a linear analysis (Fig. 3).
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3. Nanoindentation model

This section develops a model for the capacitive transducer used in the previously shown experimental tests.
The indenter transducer is assumed to have a rigidized middle plate that is held with compliant supporting
springs, a perforated rigid top plate, and a perforated rigid bottom plate (see Fig. 1). Using the parallel-plate
assumption, the capacitances of the top and bottom capacitors can be written as

CT ðxÞ ¼
ere0A

xþ d0
and CBðxÞ ¼

ere0A

d0 � x
, (1)

where A is the capacitor plate area, e0 ¼ 8:854� 10�12 C2=ðNm2Þ is the permittivity constant of a vacuum [25],
er ¼ 1:005 is the relative permittivity constant of air [25], x is the displacement of the middle plate, and d0 is the
initial gap spacing between the plates at the zero volt equilibrium position.

The resulting potential energy, UðxÞ, for the first mode of the discretized system is

UðxÞ ¼
k

2
x2 þ

1

2
CT ðxÞV

2
T þ

1

2
CBðxÞV

2
B, (2)

where k is the first modal stiffness and V T and V B are the voltages applied to the top and bottom plates of the
transducer, respectively. After using Lagrange’s equation, the equation of motion for the middle plate is found
to be

m €xþ c _xþ kxþ FTSðx; _xÞ ¼
ere0A
2

V 2
B

ðd0 � xÞ2
�

V2
T

ðxþ d0Þ
2

� �
, (3)

where m is the first modal mass, c is a viscous damping coefficient, and FTSðx; _xÞ is the tip–sample interaction
force during contact.

During a typical dynamic nanoindentation test, the voltage on the top plate is typically set to zero and a
voltage is applied to the middle and bottom plates. The voltage potential on the transducer middle and bottom
plates is comprised of a constant and a single harmonic component V B ¼ VDC þ VAC cosOt. Therefore, the
resulting input to the system contains both a constant and multiple harmonic terms—given by the square of
the input voltage

V 2
B ¼ V 2

DC þ
V 2

AC

2

� �
þ 2VDCVAC cosOtþ

V 2
AC

2
cos 2Ot. (4)

To further generalize the presented results, Eq. (3) is nondimensionalized by the introduction of a
nondimensional time, t ¼ ot where o ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
is the mechanical resonance, and a nondimensional

displacement y ¼ x=d0. The resulting equation is

y00 þ 2zy0 þ yþ FTSðy; y
0Þ ¼

1

ð1� yÞ2
½F 0 þ F1 cos Ztþ F 2 cos 2Zt�, (5)

where 2z ¼ c=ðmoÞ is a damping term and Z ¼ O=o represents the ratio of the excitation frequency to
the transducer’s natural frequency. The remaining terms on the right-hand side of Eq. (5) are F0 ¼

bðV2
DC þ V2

AC=2Þ, F1 ¼ 2bVDCVAC, F2 ¼ bV2
AC=2, and b ¼ er�0A=ð2md3

0o
2Þ.
4. Methods for error correction

This section investigates the errors associated with interpreting dynamic nanoindentation data with a linear
oscillator model and provides an alternative for error correction. For the sake of simplicity, the tip–sample
interaction force is assumed to be dominated by the elastic conformal contact of a spherical tip and a flat
material surface. Empirical data is generated from numerical simulation to demonstrate that the simplified
tip–sample interaction force model qualitatively captures the resonance shifts observed during experimental
study. The errors associated with imposing a linear oscillator model are then examined. Since it is unveiled
that substantial errors will sometimes occur, methods for error correction are discussed.
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The numerical and theoretical results that follow assume a nondimensionalized version of a Hertzian
contact force,

FTSðy; y
0Þ ¼

4

3k

ffiffiffiffiffiffiffiffiffi
Rd0

p
Ey3=2, (6)

where E is the reduced modulus and R is the radius of the indenter. Although this model does not include the
influence of adhesive or viscoelastic forces, it does serve as a representative contact model for elastic materials
with little surface energy.

Numerical studies of Eq. (5) were used to investigate the qualitative trends in the system’s primary
resonance. In particular, our goal was to show that the theoretical model qualitatively captures the same
resonance shift. Thus the model parameters used for the numerical studies, with the exception of the reduced
modulus, were the actual parameters obtained from the initial calibration tests performed on the electrostatic
transducer (see Table 1). In an effort mimic the previously shown experimental tests, where the dynamic load
was held constant, F1 was held to a constant value during simulation and the values of F0 and F 2 were altered
for each of the three cases investigated.

Fig. 4 compares the spectral amplitudes of the primary response and the first harmonic (the 2Z response) for
three loading conditions against a reference case—where the reference case used the following values
(F0 ¼ 3:63� 10�3 and F2 ¼ 3:99� 10�6). The spectral response amplitudes, which primarily consisted of a
constant response a0, a response at the excitation frequency a1, and a response at the first super harmonic a2,
were extracted from the numerically generated time series. As observed in the experimental tests, a noticeable
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Fig. 4. Spectral amplitude curves generated from numerical simulation of Eq. (5) for a constant F1 ¼ 3:40� 10�4 value. Left column is

the response at the excitation frequency and the right column is the response at twice the excitation frequency. Graphs compares spectral

amplitudes with a reference case (solid red line) that was generated using F 0 ¼ 3:63� 10�3 and F2 ¼ 3:99� 10�6. The reference case acts

as a baseline when comparing the resonant peaks of the other loading conditions. The following parameters were used for the dotted blue

line results: for graphs (a) and (b) F0 ¼ 9:22� 10�4 and F2 ¼ 1:60� 10�5; for graphs (c) and (d) F 0 ¼ 2:04� 10�3 and F2 ¼ 7:09� 10�6;

for graphs (e) and (f) F 0 ¼ 5:66� 10�3 and F2 ¼ 2:55� 10�6.
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shift in system’s primary resonance is evident for the numerical data. However, these graphs additionally
reveal a shift in the system’s secondary resonance. Since the most critical question is how these trends affect
surface characterization results, the next section investigates the errors associated with the commonly applied
linear oscillator model.

4.1. Local linearization approach

This section investigates the errors associated with applying a linear oscillator model and an approach for
improving surface characterization results by tracking the shift in the system’s primary resonance. More
specifically, it is common to measure the response amplitude and phase relationships during dynamic
indentation. These measurements are then interpreted with a linear oscillator model to determine the contact
stiffness and/or the nanomechanical properties. The presented results apply a linear oscillation model by
linearizing the system about the static indentation depth d0—where the static indentation depth is the
equilibrium position when VAC is set to zero in the expressions for F0, F 1, and F 2. In essence, the presented
approach is equivalent to studying the linear oscillations about the nonlinear equilibrium position.

The assumed form for the linear oscillator model is

y00 þ 2zy0 þ o2
0y ¼ F D cos Zt, (7)

where o0 is a local linear resonance value and FD is a local dynamic excitation term which will later be related
to F 1 in Eq. (5). Since the localized equation is assumed to be linear, the terms F0 and F 2, which appear in
Eq. (5), can be disregarded based on the principle of superposition. The response amplitude and phase
relationships for Eq. (7) are

a1 ¼
F Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2
0 � Z2Þ2 þ ð2zZÞ2

q , (8a)

f ¼ tan�1
�2zZ

o2
0 � Z2

� �
. (8b)

To better understand the errors of applying a linear oscillator model, numerical studies were performed in
Eq. (5) using F 0 ¼ 1:42� 10�3, F1 ¼ 3:39� 10�4, and F 2 ¼ 1:02� 10�5. The resulting spectral amplitudes,
shown in Fig. 5, are presented along with the resulting errors in the identified modulus. For instance, larger
errors in the estimated reduced modulus are shown to occur for relatively larger oscillations near the system’s
primary resonance—where the term %jDE=Ej is the percent difference between the estimated reduced
modulus and the actual reduced modulus given in Table 1.

A second case, shown in the results of Fig. 6, was investigated for the parameters F0 ¼ 6:92� 10�3,
F1 ¼ 1:99� 10�3, and F2 ¼ 7:24� 10�5. As in the previous graph, this example shows a trend of increasing
errors as the oscillation amplitude increases. However, the error in the estimated modulus is shown to be more
than twice the amount of the previous case.

The presented approach is equivalent to identifying a local contact stiffness for parameter identification.
To achieve these results, an expression for the local resonance value, o0, was obtained by expanding the
nonlinear relationships for the tip–sample and electrostatic forces about the transducer mean position.
The influence of the electrostatic term is approximated from the first term on the right-hand side of Eq. (5)
(i.e. F e ¼ F0=ð1� yÞ2). This term is expanded about the transducer mean position, y ¼ a0, to obtain

Fe �
F0

ð1� d0Þ
2
þ

2F 0

ð1� d0Þ
3
ðy� d0Þ, (9)

where terms on the order of Oðy2Þ and higher have been neglected. Similarly, expanding the tip–sample contact
force about the transducer mean position results in

FTSðy; y
0Þ �

4E
ffiffiffiffiffiffiffiffiffi
Rd0

p
d3=20

3k
þ

2E
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rd0d0
p

k
ðy� d0Þ. (10)
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Fig. 5. Numerically predicted spectral amplitude responses are shown in graphs (a–c) for F0 ¼ 1:42� 10�3, F 1 ¼ 3:39� 10�4, and

F2 ¼ 1:02� 10�5. The legend for each plot is as follows: (a) the response at the excitation frequency, (b) the mean response, (c) the

response at twice the excitation frequency, and (d) the errors of applying a linear oscillator model with corrections for both the

electrostatic and tip–sample nonlinearities.
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An expression for the local resonance is found by collecting the coefficients of y in Eqs. (8) and (10) to obtain

o2
0 � 1þ

2E
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rd0d0
p

k
�

2F 0

ð1� d0Þ
3
. (11)

The final correction for the electrostatic nonlinearity requires relating FD to F1 by localizing the first dynamic
excitation term about the transducer mean position

FD ¼
F1

ð1� d0Þ
2
. (12)

In summary, the results of this section use gradient relationships for the nonlinear forces to obtain localized
values. This approach is equivalent to the common process of identifying a local contact stiffness. While
implementing a local resonance from linearization does greatly reduce the errors in the estimated system
parameters, this approach is somewhat limited since the corrections are localized values. In particular, this
section provides evidence to suggest that the quantification errors will increase with the oscillation amplitude.
These results elucidate a specific limitation of a linear oscillator model—the inability to capture the nonlinear
contact stiffness terms. For the presented results, this is validated by the fact that errors sharply increase as the
system’s primary resonance is approached (see Figs. 5 and 6). Thus, it makes sense to consider alternative
strategies that can mitigate the errors associated with a linear oscillator model. One approach to alleviate the
aforementioned errors is to apply a nonlinear analysis. The next section describes a nonlinear analysis which
can be implemented for improved parameter identification.
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4.2. Comparisons to nonlinear identification

This section describes a nonlinear identification approach that can be used to obtain more quantitative
results for the contact forces and/or material properties. Errors from the nonlinear identification approach are
then compared with the errors of the local linearization. In the Harmonic Balance nonlinear identification
approach, the steady-state response of the system is written as a truncated Fourier series whose fundamental
frequency is related to the excitation frequencies [26]. For example, the response of the system is written as the
following Fourier expansion:

yðtÞ ¼
XN

p¼0

ap

eipðZtþfÞ þ e�ipðZtþfÞ

2
, (13)

where N describes the number of terms in the expansion and f is the phase shift between the excitation signal
and the output response. To help obtain an approximate analytic solution, a parametric expression is assumed
for the tip–sample interaction force,

FTSðy; y
0Þ ¼ 2my0 þ a0 þ a1yþ a2y2 þ a3y3, (14)

which has coefficients to capture the viscoelastic and nonlinear restoration forces. If it is assumed that N ¼ 2
for Eq. (13), both Eqs. (13) and (14) can be substituted into Eq. (5) and the terms of the same harmonics can
be equated into real and imaginary components. The result is a set of equations that relate the excitation
harmonics to the spectral amplitudes and relative phase response of the system. While these relationships are
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nonlinear functions of the response amplitude and phase relationships, they are linearly related to the
unknown parameters of the differential equation. Eq. (15) is a matrix equation that relates the unknown
parameters of the system to the measured spectral amplitudes

B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B31 B32 B33 B34 B35

B41 B42 B43 B44 B45

B51 B52 B53 B54 B55

2
6666664

3
7777775

mþ z

a0
1þ a1
a2
a3

2
6666664

3
7777775
¼

D1

D2

D3

D4

D5

2
6666664

3
7777775
, (15)

which may be rewritten in a more compact form as BC ¼ D. The unknown system parameters can then be
found by simply multiplying both sides of Eq. (15) by the inverse of B. This approach was investigated for
both N ¼ 2, as shown in Eq. (15), and for N ¼ 1 with nearly negligible differences in the identified modulus.
However, using N ¼ 1 reduces the number of equations to three, or three rows for the B-matrix of Eq. (15),
which requires an additional measurement to be taken at a neighboring frequency to make the number or rows
greater than the number of unknowns. In an effort to minimize the presented complexity, the lengthy
expressions that populate Eq. (15) for N ¼ 1 have been listed in the appendix—see Eqs. (A.1)–(A.3).

The procedure for identifying the reduced modulus of Eq. (6) required relating a0–a3 of Eq. (14) to the
Taylor series expansion of Eq. (6) about the mean transducer position. The coefficients used to relate the
contact force to the reduced modulus were

a0 ¼ �
E

ffiffiffiffiffiffiffiffiffi
Rd0

p
a
3=2
0

12k
, (16a)
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Fig. 7. Errors from local linearization (solid red line) are compared to the harmonic balance nonlinear identification approach

(dotted blue line). Presented results are for the same parameters as (a) corresponds to the results of Fig. 5 and (b) corresponds to the results

of Fig. 6.
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a1 ¼
3E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rd0a0

p

4k
, (16b)

a2 ¼
3E

ffiffiffiffiffiffiffiffiffi
Rd0

p

4k
ffiffiffiffiffi
a0
p , (16c)

a3 ¼ �
E

ffiffiffiffiffiffiffiffiffi
Rd0

p

12ka
3=2
0

. (16d)

Since multiple realizations of the reduced modulus can be obtained from the coefficients a0–a3, the least-
square error of FTSðy; y0Þ over the range of a1 was used. Fig. 7 compares the errors from the nonlinear
identification approach to those of the local linearization method. The presented cases are the same as those
studied in Figs. 5 and 6. In both these figures, and in the numerous other cases investigated, the nonlinear
identification approach greatly reduces the errors in the identified modulus.
5. Conclusions

Indentation testing has become a popular method for surface characterization. This paper states that
measurement nonlinearities are responsible for the observed changes in the estimated contact stiffness and
material properties that occur under different loading conditions. The justification proceeds begins by
presenting phenomenological data from experimental dynamic nanoindentation tests that show a qualitative
change in system’s primary resonance. Although a resonance shift is common knowledge to some researchers,
the fact that errors may arise when interpreting dynamic tests with a linear oscillator model has not received
any attention. This fact has motivated the authors to examine the errors that may arise when using a linear
oscillator model to interpret dynamic nanoindentation tests.

After presenting experimental evidence that illustrates a phenomenological trend in the system’s primary
resonance, the manuscript then explores the notion that nonlinearity in the measurement process could
sometimes skew measurement interpretations. In particular, if a linear oscillator models is applied for
measurement interpretation, we show measurement nonlinearities can be falsely interpreted as material
behavior. This suggests that system nonlinearities should be included in modeling efforts aimed at quantitative
characterization of material surfaces with indentation testing. Furthermore, nonlinear identification schemes
should also be implemented to obtain the most accurate results.

In an effort to provide conclusive evidence of our hypothesis, we have chosen to perform numerical and
theoretical studies that mimic the experimental situation. Modeling efforts apply a Hertzian contact model to
describe the tip–sample interaction force and develop a model for the commercially available nanoindentation
transducer. After demonstrating that the numerical studies show qualitative agreement with the
experimentally observed resonance shift, we investigate our assertion that measurement nonlinearities can
be falsely interpreted as material behavior through the application of a linear parameter estimation technique.
Furthermore, error corrections are investigated by applying linearization about the nonlinear equilibrium
position before presenting the results of a more comprehensive nonlinear analysis.

In summary, the experimentally observed primary resonance shift phenomenon motivated us to investigate
whether nonlinearity could cause errors in the identification of the nanomechanical properties with a linear
oscillator model. Numerical studies are used to confirm that measurement nonlinearities will interact to alter
the system’s primary and secondary resonances which will also skew the results of applying a linear
identification scheme. Finally, it is shown that unwanted errors in the identification process can be minimized
through the implementation of a nonlinear identification procedure.

While the authors believe the present work confirms our hypothesis that measurement nonlinearities can be
falsely interpreted as material behavior, we acknowledge that present study does not investigate an upper
bound. Thus, we believe one area of future investigation would be to determine the parameter space regions
where the errors are the most and least prevalent. Along this direction, we have observed in preliminary work
that the nonlinear terms become more influential as the static indentation depth is decreased and oscillation
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amplitude is increased. Thus, we expect linear analysis errors to be more substantial for dynamic
nanoindentation than they would be for microindentation.
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Appendix A. Harmonic Balance matrix terms

The first row of Eq. (15) are the constants that are equated from the Harmonic Balance approach. These
terms are given by

B11 ¼ 0,

B12 ¼ ð1� a0Þ
2
þ 1

2
a2
1,

B13 ¼ a0ð1� a0Þ
2
þ a2

1ð
3
2
a0 � 1Þ,
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8
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1 þ

1
2
þ 3a0ða0 � 1ÞÞ þ a2
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3
2
Þ þ a3

0ða0 � 1Þ2,

D1 ¼ F0 � a2
1Z

2ð1� a0Þ. ðA:1Þ

The second row of Eq. (15) includes the real terms from balancing the first harmonic. These terms are

B21 ¼ �a1Z½ða0 � 1Þ2 þ 1
4
a2
1� sinf,

B22 ¼ a1ða0 � 1Þ cosf,

B23 ¼ a1½a0ð
3
2
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8
a2
1 þ

1
2
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2
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3
8
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2
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Þ� cosf,
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1 þ 4ða0 � 1Þ2� cosf. ðA:2Þ

The terms of Eq. (15) that comprise the third row are the imaginary terms from balancing that result from
balancing the first harmonic. These terms are

B31 ¼ a1Z½ða0 � 1Þ2 þ 1
4
a2
1� cosf,

B32 ¼ a1ða0 � 1Þ sinf,

B33 ¼ a1½a0ð
3
2
a0 � 2Þ þ 3

8
a2
1 þ

1
2
� sinf,

B34 ¼ a1ð2a0 � 1Þ½a0ða0 � 1Þ þ 3
4
a2
1� sinf,
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